| 1. |
integral cos^4x dx |
|
Answer» To find , \(\int \cos^4x dx\) Since we know that \(\cos^2x = {1 \over 2}(\cos2x+1)\) so , \(\cos^4x = {1 \over 4}(\cos^22x+1+2\cos2x)\) We can also expand \(\cos^22x \) ⇒ \(\cos^22x = {1 \over 2}(\cos4x + 1)\) Which means \(\cos^4x = {1 \over 8}(\cos4x) + {1 \over 2}(\cos2x) + {3 \over 8}\) Now we have to evaluate the integral of : \({1 \over 8}\int\cos4xdx + {1 \over 2}\int\cos2xdx + {3 \over 8}\int dx\) Since , Integral of \(\cos x = \sin x\) ⇒\({1 \over 8}\times{1 \over 4}\int\cos4x (d(4x)) + {1 \over 2}\times{1 \over 2}\int\cos2x(d(2x)) + {3 \over 8}\int dx\) ⇒\({\sin4x \over 32} + {\sin2x \over 4} + {3x \over 8} + C\) Hence , \(\int \cos^4x dx\) = \({\sin4x \over 32} + {\sin2x \over 4} + {3x \over 8} + C\) |
|