1.

`int(x^(2)+1)/(x^(4)-x^(2)+1)dx=` . . .A. `tan^(-1)((x^(2) +1)/(2))+c`B. `tan^(-1)(x^(2)) + c`C. `tan^(-1)(2x^(2) -1) + c`D. `tan^(-1)((x^(2) -1)/(x))+c`

Answer» Correct Answer - D
Let `I = int (x^(2) + 1)/(x^(4) - x^(2) + 1) dx`
`= int (1 + (1)/(x^(2)))/(x^(2) - 1 + (1)/(x^(2))) dx = int (1 + (1)/(x^(2)))/((x - (1)/(x))^(2) + 1)`
Put `x - (1)/(x) = t`
`(1 + (1)/(x^(2))) dx = dt`
`:. I = int (dt)/(t^(2) + 1) = tan^(-1) (t) + c`
`= tan^(-1) (x - (1)/(x)) + C tan^(-1) ((x^(2) - 1)/(x)) + C`


Discussion

No Comment Found

Related InterviewSolutions