1.

In Young's double slit experiment, fringes of certain width are produced on the screen kept at a certain distance from the slits. When the screen is moved away from the slits by 0.1m, fringe width increases by 6xx10^(-5)m. The separation between the slits is 1 mm. calculate the wavelength of the light used.

Answer»

Solution :`beta=(lamdaD)/(d)`. .(i)
`{beta+6xx10^(-5)}=beta.=(lamdaD.)/(d)=(lamda(D+0.1))/(d)`. . (II)
EQUATION (ii)-equation (i) gives
`6xx10^(-5)=(0.1lamda)/(d)` }
As d=1mm `=1xx10^(-3)m`, `lamda=(6xx10^(-5)xxd)/(0.1)=(6xx10^(-5)xx1xx10^(-3))/(10^(-1))}`
Arriving `lamda=6xx10^(-7)m=600nm=6000` Å
Detailed Answer:
`D=0.1m`,
`beta=6xx10^(-5)m`
`d=1xx10^(-3)m`
`beta=(lamdaD)/(d)`
`lamda=(betad)/(D)=(6xx10^(-5)xx1xx10^(-3))/(0.1)=(6xx10^(-8))/(0.1)`
`=6xx10^(-7)m`


Discussion

No Comment Found

Related InterviewSolutions