Saved Bookmarks
| 1. |
In the xy plane three distinct lines `l_1,l_2,l_3` are concurrent at `M(lambda,0)`. Also the lines `l_1,l_2,l_3` are normals to the parabola `y^2 =6x` at the points `A(x_1,y_1), B(x_2,y_2) ,C(x_3,y_3)` respectively. ThenA. `lambda lt -5`B. `lambda gt 3`C. `-5 lt lambda lt -3`D. `0 lt lambda lt 3` |
|
Answer» Correct Answer - B Any normal `y=mx-2am-am^(3)` Here `a=3//2` through `(lambda, 0)` `0= m lambda-2 am-am^(3)` `m=0, lambda=2a+am^(2)` `m^(2)=lambda/a-2 gt 0` `lambda gt 2a rArr lambda gt 3` |
|