Saved Bookmarks
| 1. |
In the previous question, if dv//dt = 0, then the angular acceleration of the ladder when alpha= 45^@ is. |
|
Answer» `2 V^(2) L^(2)` `v' sin theta = v cos theta`….(1) let INSTANTANEOUS axis of rotation is at distance `l` from END `A`. `omega = (v sin theta)/(l) = (v' cos theta)/((L-l))` ....(2) from (1) & (2) `omega = (v sin theta)/(l) = (v cos^(2) theta)/(sin theta (L - l))` `l = L sin^(2) theta`... (3) from (2) & (3) `omega = (v cosec theta)/(L)` `(d omega)/(DT) = (v)/(L) (-cos ec theta. cot theta) xx (d theta)/(dt)` `(d omega)/(dt) = (v)/(L) (-cos ec theta. cot theta) xx (v)/(L) cos ec theta` `ALPHA = - (v^(2))/(L^(2))cos ec^(2) theta. cot theta` `alpha = - (v^(2))/(L^(2)) cos ec^(2) 45^@. cot 45^@ rArr alpha = -(2v^(2))/(L^(2))`. |
|