1.

In the previous question, if dv//dt = 0, then the angular acceleration of the ladder when alpha= 45^@ is.

Answer»

`2 V^(2) L^(2)`
`v^(2)//2L^(2)`
`sqrt(2) [v^(2)//L^(2)]`
None

Solution :
`v' sin theta = v cos theta`….(1)
let INSTANTANEOUS axis of rotation is at distance `l` from END `A`.
`omega = (v sin theta)/(l) = (v' cos theta)/((L-l))` ....(2)
from (1) & (2) `omega = (v sin theta)/(l) = (v cos^(2) theta)/(sin theta (L - l))`
`l = L sin^(2) theta`... (3)
from (2) & (3)
`omega = (v cosec theta)/(L)`
`(d omega)/(DT) = (v)/(L) (-cos ec theta. cot theta) xx (d theta)/(dt)`
`(d omega)/(dt) = (v)/(L) (-cos ec theta. cot theta) xx (v)/(L) cos ec theta`
`ALPHA = - (v^(2))/(L^(2))cos ec^(2) theta. cot theta`
`alpha = - (v^(2))/(L^(2)) cos ec^(2) 45^@. cot 45^@ rArr alpha = -(2v^(2))/(L^(2))`.


Discussion

No Comment Found