1.

In the given figure \(\overline {PQ}\) is a line. Ray \(\overline {OR}\) is perpendicular to line \(\overline {PQ}. \overline {OS}\) os is another ray lying between rays \(\overline {OP}\) and \(\overline {OR}\) Prove that

Answer»

Given : OR ⊥ PQ ⇒ ∠ROQ = 90° 

To prove: ∠ROS = 1/2(∠QOS – ∠POS) 

From the figure 

∠ROS = ∠QOS – ∠QOR ……………(1) 

∠ROS = ∠ROP – ∠POS ……………..(2) 

Adding (1) and (2) 

∠ROS + ∠ROS = ∠QOS – ∠QOR +∠ROP – ∠POS 

[ ∵ ∠QOR = ∠ROP = 90° given] 

⇒ 2∠ROS = ∠QOS – ∠POS

⇒ ∠ROS = 1/2 [∠QOS – ∠POS]

Hence proved.



Discussion

No Comment Found