Saved Bookmarks
| 1. |
In the figure, the lines GH and IJ are parallel. If ∠1 = 108° and ∠2 = 123°, find the value of x, y and z. |
|
Answer» Given GH || IZ ∠1 = 108° ∠2 = 123° ∠1 + ∠KGH = 180 [linear pair] 108° + ∠KGH = 180° 108° + ∠KGH – 108° = 180° – 108° ∠KGH = 72° ∠KGH = x° (corresponding angles if KG is a transversal) ∴ x° = 72° Similarly ∠2 + ∠GHK = 180° (∵ linear pair) 123° + ∠GHK = 180° 123° + ∠GHK – 123° = 180° – 123° ∠GHK = 57° Again ∠GHK = y° (corresponding angles if KH is a transversal) y = 57° x° + y° + z° = 180° (sum of three angles of a triangle is 180°) 72° + 57° + z° = 180° 129° + z° = 180° 129° + z° – 129° = 180° – 129° z = 51° x = 72°, y = 57°, z = 51° |
|