1.

In the figure, the lines GH and IJ are parallel. If ∠1 = 108° and ∠2 = 123°, find the value of x, y and z.

Answer»

Given GH || IZ 

∠1 = 108° 

∠2 = 123° 

∠1 + ∠KGH = 180 [linear pair] 

108° + ∠KGH = 180°

108° + ∠KGH – 108° = 180° – 108° 

∠KGH = 72° 

∠KGH = x° (corresponding angles if KG is a transversal)

∴ x° = 72° 

Similarly 

∠2 + ∠GHK = 180° (∵ linear pair) 

123° + ∠GHK = 180° 

123° + ∠GHK – 123° = 180° – 123° 

∠GHK = 57° 

Again ∠GHK = y° (corresponding angles if KH is a transversal)

y = 57° 

x° + y° + z° = 180° (sum of three angles of a triangle is 180°)

72° + 57° + z° = 180° 

129° + z° = 180° 

129° + z° – 129° = 180° – 129° 

z = 51° 

x = 72°, y = 57°, z = 51°



Discussion

No Comment Found