Saved Bookmarks
| 1. |
In the figure below, `2angleP=angleQOR`. OQ and OR are bisectors of `angleQ and angleR` respectively. Find `angleP`. A. `60^(@)`B. `70^(@)`C. `40^(@)`D. `80^(@)` |
|
Answer» Correct Answer - A `2 angleP=angleQOR` In `DeltaPQR, angleP+angleQ+angleR=180^(@)" "`.(1) `implies angleQ+ angleR=180^(@)-angleP` In `DeltaOQR, angleOQR+ angleQOR+ angleORQ=180^(@)`. `implies (angleQ)/(2)+2 angleP+(angleR)/(2)=180^(@)" "` (2). `implies 2angleP+(180^(@)-angleP)/(2)=180^(@)` `angleP=60^(@)` Hence, the correct option is (a). |
|