Saved Bookmarks
| 1. |
In the adjoining figure, points D and E are on side BC of ∆ABC, such that BD = CE and AD AE. Show that ∆ABD ≅ ∆ACE. |
|
Answer» Given: Points D and E are on side BC of ∆ABC, such that BD = CE and AD = AE. To prove: ∆ABD ≅ ∆ACE Proof: In ∆ADE, seg AD = seg AE [Given] ∴ ∠AED = ∠ADE …(i) [Isosceles triangle theorem] Now, ∠ADE + ∠ADB = 180° …(ii) [Angles in a linear pair] ∴ ∠AED + ∠AEC = 180° ….(iii) [Angles in a linear pair] ∴ ∠ADE + ∠ADB = ∠AED + ∠AEC [From (ii) and (iii)] ∴ ∠ADE + ∠ADB = ∠ADE + ∠AEC [From (i)] ∴ ∠ADB = ∠AEC ….(iv) [Eliminating ∠ADE from both sides] In ∆ABD and ∆ACE, seg BD ≅ seg CE [Given] ∠ADB = ∠AEC [From (iv)] seg AD ≅ seg AE [Given] ∴ ∆ABD ≅ ∆ACE [SAS test] |
|