1.

In the adjoining figure, points D and E are on side BC of ∆ABC, such that BD = CE and AD AE. Show that ∆ABD ≅ ∆ACE.

Answer»

Given: Points D and E are on side BC of ∆ABC, such that BD = CE and AD = AE. 

To prove: ∆ABD ≅ ∆ACE

Proof: 

In ∆ADE, seg AD = seg AE [Given] 

∴ ∠AED = ∠ADE …(i) [Isosceles triangle theorem] 

Now, ∠ADE + ∠ADB = 180° …(ii) [Angles in a linear pair] 

∴ ∠AED + ∠AEC = 180° ….(iii) [Angles in a linear pair] 

∴ ∠ADE + ∠ADB = ∠AED + ∠AEC [From (ii) and (iii)] 

∴ ∠ADE + ∠ADB = ∠ADE + ∠AEC [From (i)] 

∴ ∠ADB = ∠AEC ….(iv) [Eliminating ∠ADE from both sides] 

In ∆ABD and ∆ACE, seg BD ≅ seg CE [Given] 

∠ADB = ∠AEC [From (iv)] 

seg AD ≅ seg AE [Given] 

∴ ∆ABD ≅ ∆ACE [SAS test]



Discussion

No Comment Found

Related InterviewSolutions