1.

In the adjacent figure, ABC is a right-angled triangle with right angle at B and points D, E trisect BC. Prove that 8AE2 = 3AC2 + 5AD2.

Answer»

Since D and E are the points of trisection of BC, therefore BD = DE = CE

Let BD = DE = CE = x

Then BE = 2x and BC = 3x

In right triangles ABD, ABE and ABC, (using Pythagoras theorem)

We have AD2 = AB2 + BD2

⇒ AD2 = AB2 + x2 … (1)

AE2 = AB2 + BE2

⇒ AB2 + (2x)2

⇒ AE2 = AB2 + 4x2 … (2)

And AC2 = AB2 + BC2 = AB2 + (3x)2

AC2 = AB2 + 9x2

Now 8 AE2 – 3 AC2 – 5 AD2 = 8 (AB2 + 4x2) – 3 (AB2 + 9x2) – 5 (AB2 + x2)

= 8AB2 + 32x2 – 3AB2 – 27x2 – 5AB2 – 5x2

= 0

∴ 8 AE2 – 3 AC2 – 5 AD2 = 0

8 AE2 = 3 AC2 + 5 AD2.

Hence it is proved.



Discussion

No Comment Found