Saved Bookmarks
| 1. |
In the adjacent figure, ABC is a right-angled triangle with right angle at B and points D, E trisect BC. Prove that 8AE2 = 3AC2 + 5AD2. |
|
Answer» Since D and E are the points of trisection of BC, therefore BD = DE = CE Let BD = DE = CE = x Then BE = 2x and BC = 3x In right triangles ABD, ABE and ABC, (using Pythagoras theorem) We have AD2 = AB2 + BD2 ⇒ AD2 = AB2 + x2 … (1) AE2 = AB2 + BE2 ⇒ AB2 + (2x)2 ⇒ AE2 = AB2 + 4x2 … (2) And AC2 = AB2 + BC2 = AB2 + (3x)2 AC2 = AB2 + 9x2 Now 8 AE2 – 3 AC2 – 5 AD2 = 8 (AB2 + 4x2) – 3 (AB2 + 9x2) – 5 (AB2 + x2) = 8AB2 + 32x2 – 3AB2 – 27x2 – 5AB2 – 5x2 = 0 ∴ 8 AE2 – 3 AC2 – 5 AD2 = 0 8 AE2 = 3 AC2 + 5 AD2. Hence it is proved. |
|