1.

In square ABCD, P and Q are mid-point of AB and CD respectively. If AB = 8 cm and PQ and BD intersect at O, then find area of ΔOPB.

Answer»

Given :

ABCD is a square P and Q are the mid points of AB and CD respectively. 

AB = 8cm 

PQ and BD intersect at O 

Now,

AP = BP = \(\frac{1}{2}\) AB

AP = BP = \(\frac{1}{2}\) x 8

= 4 cm 

AB = AD = 8 cm

QP ‖ AD 

Then, 

AD = QP 

So, 

OP = AD 

OP = \(\frac{1}{2}\) x 8 

= 4 cm 

Now,

Area (ΔOPB) = \(\frac{1}{2}\) x BP x PO

 = \(\frac{1}{2}\) x 4 x 4

= 8 cm2

Hence, 

Area (ΔOPB) is 8 cm2



Discussion

No Comment Found