1.

In Millikan's oil drop experiment , what is the terminal speed of an uncharged drop of radius 2.0xx10^(-5)mand density 1.2xx10^(3)kgm^(-3) . Take the viscosity of air at the temperature of the experiment to be 1.8xx10^(-5) Pa.s . Howmuch is the viscous force on the drop at thatspeed ?Neglect buoyancy of the drop due to air .

Answer»

Solution :Here radius of DROP `r=2.0xx10^(-5)m`
Density of oil`rho=1.2xx10^(3)kgm^(-3)`
Density of air (dropis of air ) `rho_(o)=0`
The COEFFICIENT of viscosity of oil,
`ETA=1.8xx10^(-5)` Pas
Terminal velocityfrom Stock.s law ,
`v_(t)=(2)/(9)(r^(2)g)/(eta)(rho-rho_(o))`
`=(2r^(2)gQ)/(9eta)`
`=(2xx4xx10^(-10)xx9.8xx1.2xx10^(3))/(9xx1.8xx10^(-5))`
`=5.807xx10^(-2)`
`v_(t)=5.8cms^(-1)`
Viscous force on drop from Stoke.s law
`F_(v)=6pietarv_(t)`
`=6xx3.14xx1.8xx10^(-5)xx2xx10^(-5)xx5.8xx10^(-2)`
`=393.34xx10^(-12)`
`=3.93xx10^(-10)N`


Discussion

No Comment Found