Saved Bookmarks
| 1. |
In given fig., O is center of the circle. Chord AB = CD and ∠OBA = 40°, then ∠COD will be :(A) 100°(B) 80°(C) 180°(D) 90° |
|
Answer» Answer is (A) 100° Given : AB = CD Radius of circle = OB = OD ∴ ∠OBA = ∠ODC = 40° ∆OCD in OD = OC (Radius of circle) ∴ ∆OCD is an isosceles triangle. ∠OCD = ∠ODC = 40° In ∆OCD, ∠ODC + ∠OCD + ∠COD = 180° 40° + 40° + ∠CQD = 180° ∠COD = 180° – 40° – 40° ∠COD = 180° – 80° ∠COD = 100° |
|