1.

In Fig. if AP = 10 cm, then BP =A. \(\sqrt{109}\,cm\)B. \(\sqrt{127}\,cm\)C . \(\sqrt{119}\,cm\)D. \(\sqrt{109}\,cm\)

Answer»

Answer is  B. \(\sqrt{127}\,cm\)

Given: 

AP = 10 cm

OA = 6 cm 

OB = 3 cm 

Property : The tangent at a point on a circle is at right angles to the radius obtained by joining center and the point of tangency. 

By above property, ∆PAO is right-angled at ∠PAO (i.e., ∠PAO = 90°) and ∆PBO is right-angled at ∠PBO (i.e., ∠PBO = 90°). 

Therefore by Pythagoras theorem in ∆PAO, 

OP2 = OA2 + AP2 

⇒ OP2 = 62 + 102

 ⇒ OP2 = 36 + 100 

⇒ OP = √136

Now by Pythagoras theorem in ∆PBO, 

OP2 = OB2 + BP2 

BP2 = OP2 – OB2 

⇒ BP2 = (√136) 2 – 3

⇒ BP2 = 136 – 9 

⇒ BP= √127 

Hence, BP= √127 cm



Discussion

No Comment Found

Related InterviewSolutions