| 1. |
In each of the following triangles, find the value of x. |
|
Answer» (i) Let ∠S = 3x° Given = \(\overline{RS}\) Given = \(\overline{RT}\) = 4.5 cm Given ∠S = ∠T = 3x° [∵ Angles opposite to equal sides are equal] By angle sum property of a triangle we have, ∠R + ∠S + ∠T = 180° 72° + 3x + 3x = 180° 72° + 6x = 180° x = \(\frac{108°}{6}\) x = 18° (ii) Given ∠X = 3x; ∠Y = 2x; ∠Z = 4x By angle sum property of a triangle we have ∠X + ∠Y + ∠Z = 180° 3x + 2x + 4x = 180° ∴ 9x = 180° x = \(\frac{180°}{9}\) x = 20° (iii) Given ∠T = (x – 4)° ∠U = 90° ∠V = (3x – 2)° By angle sum property of a triang we have ∠T + ∠U + ∠V = 180° (x – 4)° + 90° + (3x – 2)° = 180° x – 4° + 90° + 3x – 2° = 180° x + 3x + 90° – 4° – 2° = 180° 4x + 84° = 180° 4x = 180° – 84° 4x = 96° x = \(\frac{96°}{4}\) = 24° x = 24° (iv) Given ∠N = (x + 31)° ∠O = (3x – 10)° ∠P = (2x – 3)° By angle sum property of a triangle we have ∠N + ∠O + ∠P = O (x + 31)° + (3x – 10)° + (2x – 3)° = 180° x + 31°+ 3x – 10° + 2x – 3° = 180° x + 3x + 2x + 31° – 10° – 3° = 180° 6x + 18° = 180° 6x = 180° + 18° 6x = 162° x = \(\frac{162°}{6}\) = 27° x = 27° |
|