1.

In any AABC, prove that sin2A + sin2B – sin2C = 4 Cos A Cos B sin C

Answer»

LHS = sin2A + sin 2B -sin 20 

= 2sin (A+ B). Cos (A – B) – 2 sin C Cos C[ using transformation formula] 

= 2sin C. Cos (A – B) – 2sin C. Cos C 

= 2sin C[Cos (A – B) – Cos C] 

= 2 sin C [Cos (A – B)+ Cos (A + B)] 

∵ Cos (A + B) = – Cos C 

= 2 sin C. 2.cos A. Cos B 

= 4 Cos A. sin C. Cos B [∵ CosC + CosD = 2cos\(\frac{C + D}{2}cos\frac{C - D}{2}]\) 

= 4 cos A. Cos B. sin C = RHS 

∴ sin 2A + sin 2 B sin 2 C = 4 Cos A. Cos B. sin C.



Discussion

No Comment Found

Related InterviewSolutions