|
Answer» Let z = a+ib |z+1| = z+2(1+i) => |(a+ib) + 1| = a+ib+2+2i => |(a+1) + ib| = a+2 + i(b+2) => root[(a+1)2 +b2] = (a+2) + i(b+2)
comparing imaginary parts b+2 = 0 => b = -2 comparing real parts root[(a+1)2 + b2] = (a+2) => root(a2+1+2a +b2) = a+2 putting b=-2 here => root( a2+1+2a + 4) = a+2 => root(a2+2a + 5) = a+2 squaring both sides => a2+2a + 5 = a2+4+4a => 1 = 2a => a = 1/2
W.K.T -> z= a+ib substituting a=1/2 and b=-2 in z= a+ib we get, z = 1/2 - 2i
|