1.

If y = cos2 x2, find \(\frac {dy}{dx}\)1. 4x2 sin x2 cos x22. -4x cos x2 sin x23. 2x sin x2 cos x24. -2x cos x2 sin x2

Answer» Correct Answer - Option 2 : -4x cos x2 sin x2

Concept:

cos2x = 2cos2x - 1

sin2x = 2sin x cos x

 

Calculation:

Here, y = cos2 x2

Let, x2 = t 

Differentiating with respect to x, we get

⇒2xdx = dt 

⇒ dt/dx = 2x ....(1)

y = cos2t

=\(\rm \frac{\cos2t+1}{2}=\frac{\cos2t}{2}+\frac{1}{2}\)

\(\rm \frac{dy}{dx} = \frac{1}{2}\frac{d}{dt}(\cos2t)\frac{dt}{dx}+0\\ = \frac{1}{2}(-2\sin2t)\frac{dt}{dx}\cdots (from \ (1))\)

= - sin2x2 × 2x

= -4x cos x2 sin x2

Hence, option (2) is correct. 



Discussion

No Comment Found

Related InterviewSolutions