1.

If `y=acos(logx)+sin(logx),`prove that`(x^2d^2)/(dx^2)+ x(dy)/(dx)+y=0`

Answer» `y = acos(logx)+bsin(logx)`
Let `logx = t =>1/xdx = dt=>dt/dx = 1/x`
Then, `y = acost+bsint`
`=>dy/dt = -asint+bcost`
`:.dy/dx = dy/dt*dt/dx = (-asint+bcost)1/x`
`=>xdy/dx = bcost-asint`
Differentiating w.r.t. `x`,
`=>x(d^2y)/dx^2+dy/dx = (-bsint-acost)dt/dx`
`=>x(d^2y)/dx^2+dy/dx = -y/x`
`=>x^2(d^2y)/dx^2+xdy/dx+y = 0`


Discussion

No Comment Found

Related InterviewSolutions