1.

If `y=(2x+3)^((3x-5))`, find `(dy)/(dx)`.

Answer» Given: `y=(2x+3)^((3x-5))." …(i)"`
Taking logarithm on both sides of (i), we get
`log y = (3x-5)log(2x+3)." …(ii)"`
On differentiating both sides of (ii) w.r.t. x, we get
`(1)/(y).(dy)/(dx)=(3x-5).(d)/(dx){log(2x+3)}+log(2x+3).(d)/(dx)(3x-5)`
`=(3x-5).(1)/((2x+3)).2+log(2x+3).3`
`rArr(dy)/(dx)=y.{((6x-10))/((2x+3))+3log(2x+3)}`
`rArr(dy)/(dx)=(2x+3)^((3x-5)).{((6x-10))/((2x+3))+3log(2x+3)}.`


Discussion

No Comment Found