1.

If \( y=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+---+\infty \), then \( \frac{d y}{d x} \) is equal to

Answer»

y = 1 + x + \(\frac{x^2}{2!}+\frac{x^3}{3!}+....\infty\)

 = e(\(\because\) ex = 1 + x + \(\frac{x^2}{2!}+\frac{x^3}{3!}+....\))

\(\because\) \(\frac{dy}{dx}=\frac d{dx}e^x=e^x=y\) 

or Alternate method:

y =  1 + x + \(\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}....\infty\) 

\(\therefore\) \(\frac{dy}{dx}\) = 1 + \(\frac{2x}{2!}+\frac{3x^2}{3!}+\frac{4x^3}{4!}....\infty\)

 = 1 + x + \(\frac{x^2}{2!}+\frac{x^3}{3!}+...\infty\) 

 = y



Discussion

No Comment Found

Related InterviewSolutions