1.

If `x^y=e^(x-y),`show that `(dy)/(dx)=(logx)/({log(x e)}^2)`

Answer» `x^y = e^(x-y)`
Taking log both sides,
`log(x^y) = log(e^(x-y))`
`=>ylogx = (x-y)loge`
As `log e = 1`,
`=>ylogx+y = x`
`=>y(1+logx) = x`
`y = x/(1+logx)`
`dy/dx = ((1+logx)1-x(1/x))/(1+logx)^2`
`=>dy/dx = (1+logx-1)/(loge+logx)^2`
`=>dy/dx = logx/(log(xe))^2`


Discussion

No Comment Found

Related InterviewSolutions