Saved Bookmarks
| 1. |
If x= r cosα sinβ, y = r sinα sinβ and z = r cosα then prove that x2 + y2 + z2 = r2. |
|
Answer» Taking LHS = x2 + y2 + z2 Putting the values of x, y and z , we get =(r cos α sin β)2 + (r sin α sin β)2 + (r cos α)2 = r2 cos2α sin2β + r2 sin2α sin2β + r2 cos2α Taking common r2 sin2 α , we get = r2 sin2α (cos2β + sin2 β) + r2cos2 α = r2 sin2α + r2 cos2 α [∵ cos2 β + sin2 β = 1] =r2 ( sin2 α + cos2 α) = r2 [∵ cos2 α + sin2 α = 1] = RHS Hence Proved |
|