Saved Bookmarks
| 1. |
If x `prop 1/y ` and y `prop 1/z ` , then x `prop ` |
|
Answer» x `prop 1/y rArr x =k_(1)1/y` (`k_(1) ne `0= variation constant . ) `rArr y =(k_(1))/(x) ……..(1)` Again , y `prop 1/z rArr =k_(2) 1/z` (`k_(2) ne`0= variation constant .) `rArr (k_(1))/(x) =k_(2)1/z` [from (1) ] `rArr x =(k_(1))/(k_(2))z ` `rArr x=k.Z(when (k_(1))/(k_(2))kne0="variation constant")` `rArr x prop z (because k ne0="variation constant")` `therefore x prop z` |
|