| 1. |
If x = k(θ + sin θ) and y = k (1 + cos θ), then what is the derivative of y with respect to x at θ = π/2? 1. -12. 03. 14. 2 |
|
Answer» Correct Answer - Option 1 : -1 Concept: If x = f(θ), y = f(θ) then, By chain Rule, we have Calculations: Given, x = k(θ + sin θ) ⇒\(\rm \dfrac {dx}{dθ} = k (1+cos \;θ)\) y = k (1 + cos θ) ⇒\(\rm \dfrac {dy}{dθ} = k (-sin \;θ)\) By chain rule, we have \(\rm \dfrac {dy}{dx} = \dfrac {\dfrac {dy}{d\theta}}{\dfrac {dx}{d\theta}}\) ⇒ \(\rm \dfrac{dy}{dx} = \dfrac {-ksin \;\theta}{k(1+ cos\;\theta)}\) ⇒ \(\rm \dfrac{dy}{dx} = \dfrac {-sin \;\theta}{(1+ cos\;\theta)}\) Put θ = π/2 \(\rm \dfrac{dy}{dx} = \dfrac {-sin \;\dfrac {\pi}{2}}{(1+ cos\;\dfrac {\pi}{2})}\) ⇒ \(\rm \dfrac{dy}{dx} = -1\) Hence, if x = k(θ + sin θ) and y = k (1 + cos θ), then the derivative of y with respect to x at θ = π/2 is -1. |
|