Saved Bookmarks
| 1. |
If (x) donotes the greates integer `lex,` then the value of `int_(4)^(10)([x^(2)])/([x^(2)-28x+196]+[x^(2)])` dx is -A. 3B. 2C. 1D. 0 |
|
Answer» Correct Answer - A We have `I=underset(4)overset(10)int([x^(2)]dx)/([(14-x^(2))]+[x^(2)])` by using propery `I=underset(4)overset(10)intf(x)dx=underset(a)overset(b)intf(a+b-x)dx` also, `I=underset(4)overset(10)int([4+10-x^(2)]dx)/([(14-(14-x))^(2)]+[(14-x^(2))])` `2Iunderset(4)overset(10)int(([x]^(2))/([(14-x)]^(2)+[x]^(2))+[(14-x)^(2)]/([x^(2)]+[(14-x)^(2)]))dx` `=underset(4)overset(10)int1.dxrArr1=3` |
|