1.

If \( x=a(\theta+\sin \theta), y=a(1-\cos \theta) \), prove that \( \frac{d y}{d x}=\tan \left(\frac{\theta}{2}\right) \)

Answer»

\(Given : x=a(θ+sinθ) \) and \(y=a(1-cosθ)\)

Differentiating w.r.t. t we get       

\({dx \over dt} =a({dθ \over dt}) + cosθ({dθ \over dt })\)••••• (1) And  \({dy \over dt } = asin({dθ \over dt} )\)   •••••(2)

\({dy \over dx} = {{dy \over dt} \over {dx \over dt} } = {a{dθ \over dt}(sinθ) \over a{dθ \over dt} (1+cosθ) }\) ••••from (1) and (2)

       \( = { sinθ \over 1+cosθ }\) 

          \(= {2sin({θ \over 2}) cos({θ \over 2 }) \over 2 cos²({θ \over 2}) }\) 

      \(= {sin({θ \over 2}) \over cos( {θ \over 2}) }\) 

       \(= tan({θ \over 2})\)



Discussion

No Comment Found

Related InterviewSolutions