Saved Bookmarks
| 1. |
If `x > 0, y > 0, z>0 and x + y + z = 1` then the minimum value of `x/(2-x)+y/(2-y)+z/(2-z)` isA. 0.2B. 0.4C. 0.6D. 0.8 |
|
Answer» Correct Answer - C Since, AM of `(-1)th` powers `ge(-1)th` powers of AM `:.((2-x)^(-1)+(2-y)^(-1)+(2-z)^(-1))/(3)ge(((2-x)+(2-y)+(2-z))/(3))^(-1)` `=[(6-(x+y+z))/(3)]^(-1)=((6-1)/(3))^(-1)=(3)/(5)" " [:.x+y+z=1]` `((2-x)^(-1)+(2-y)^(-1)+(2-z)^(-1))/(3)ge (3)/(5)` or `(1)/(3)[(1)/(2-x)+(1)/(2-y)+(1)/(2-z)]ge (3)/(5)` `implies (1)/(2-x)+(1)/(2-y)+(1)/(2-z)ge (9)/(5)` or `(2)/(2-x)+(2)/(2-y)+(2)/(2-z)ge (18)/(5)` or `1+(x)/(2-x)+1+(y)/(2-y)+1+(z)/(2-z)ge (18)/(5)` or `(x)/(2-x)+(y)/(2-y)+(z)/(2-z)ge (18)/(5)-3` Hence, `(x)/(2-x)+(y)/(2-y)+(z)/(2-z)ge (3)/(5)=0.6` `implies (x)/(2-x)+(y)/(2-y)+(z)/(2-z)ge 0.6` Thus, minimum value of `(x)/(2-x)+(y)/(2-y)+(z)/(2-z)` is 0.6. |
|