1.

If \(\vec a, \vec b\) are vectors such that \(|\vec a + \vec b| = \sqrt {29}\) and \(\vec a \times (2\hat i + 3\hat j + 4\hat k) = (2\hat i + 3\hat j + 4\hat k) \times \vec b\) then possible value of \((\vec a + \vec b).(-7\hat i + 2\hat j + 3\hat k)\) is

Answer» Correct Answer - Option 3 : 4

Concept:

  • The cross product of vector to itself = 0
  • The cross product of collinear vectors = 0
  • The dot product of collinear vectors = Product of their Magnitudes
  • \(\rm \vec a \times \vec b=-\vec b \times \vec a\)
  • For dot product \(\rm (\vec P + \vec Q) \cdot \vec R = (\vec P\cdot \vec R) +(\vec Q\cdot \vec R)\)
  • For cross product \(\rm (\vec P + \vec Q) ×\vec R = (\vec P×\vec R) + (\vec Q×\vec R) \) 
  • The unit vector in the direction of a \(\rm \vec P= \hat P={\vec P\over\left|\vec P\right|}\) 
  • A vector \(\rm \vec X\) in direction of \(\rm \vec P\) = (Magnitude of \(\rm \vec X\)) × \(\rm \hat P\)

 

Calculation:

Given:

\(\rm\vec a × (2\hat i + 3\hat j + 4\hat k) = (2\hat i + 3\hat j + 4\hat k) × \vec b\)

⇒ \(\rm\vec a × (2\hat i + 3\hat j + 4\hat k) - (2\hat i + 3\hat j + 4\hat k) × \vec b=0\)

⇒ \(\rm\vec a × (2\hat i + 3\hat j + 4\hat k) + \vec b × (2\hat i + 3\hat j + 4\hat k) =0\)

⇒ \(\boldsymbol{\rm(\vec a + \vec b) × (2\hat i + 3\hat j + 4\hat k) =0}\)

It means the \(\rm\vec a + \vec b\) and \(\rm2\hat i + 3\hat j + 4\hat k\) are collinear vectors.

∴ \(\rm\vec a + \vec b = \left|\vec a + \vec b\right| × {2\hat i + 3\hat j + 4\hat k\over \left|2\hat i + 3\hat j + 4\hat k\right|}\) 

⇒ \(\rm\vec a + \vec b = \sqrt{29}× {2\hat i + 3\hat j + 4\hat k\over\sqrt{29}}\) 

⇒ \(\boldsymbol{\rm\vec a + \vec b = 2\hat i + 3\hat j + 4\hat k}\)

\(\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = \left(2\hat i + 3\hat j + 4\hat k\right)\cdot\left(-7\hat i + 2\hat j + 3\hat k\right)\)

⇒ \(\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = \left(2\times(-7) + 3\times2 + 4\times3\right)\) 

⇒ \(\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = \left(-14 +6 + 12\right)\) 

⇒ \(\boldsymbol{\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = 4}\)



Discussion

No Comment Found

Related InterviewSolutions