| 1. |
If \(\vec a, \vec b\) are vectors such that \(|\vec a + \vec b| = \sqrt {29}\) and \(\vec a \times (2\hat i + 3\hat j + 4\hat k) = (2\hat i + 3\hat j + 4\hat k) \times \vec b\) then possible value of \((\vec a + \vec b).(-7\hat i + 2\hat j + 3\hat k)\) is |
|
Answer» Correct Answer - Option 3 : 4 Concept:
Calculation: Given: \(\rm\vec a × (2\hat i + 3\hat j + 4\hat k) = (2\hat i + 3\hat j + 4\hat k) × \vec b\) ⇒ \(\rm\vec a × (2\hat i + 3\hat j + 4\hat k) - (2\hat i + 3\hat j + 4\hat k) × \vec b=0\) ⇒ \(\rm\vec a × (2\hat i + 3\hat j + 4\hat k) + \vec b × (2\hat i + 3\hat j + 4\hat k) =0\) ⇒ \(\boldsymbol{\rm(\vec a + \vec b) × (2\hat i + 3\hat j + 4\hat k) =0}\) It means the \(\rm\vec a + \vec b\) and \(\rm2\hat i + 3\hat j + 4\hat k\) are collinear vectors. ∴ \(\rm\vec a + \vec b = \left|\vec a + \vec b\right| × {2\hat i + 3\hat j + 4\hat k\over \left|2\hat i + 3\hat j + 4\hat k\right|}\) ⇒ \(\rm\vec a + \vec b = \sqrt{29}× {2\hat i + 3\hat j + 4\hat k\over\sqrt{29}}\) ⇒ \(\boldsymbol{\rm\vec a + \vec b = 2\hat i + 3\hat j + 4\hat k}\) \(\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = \left(2\hat i + 3\hat j + 4\hat k\right)\cdot\left(-7\hat i + 2\hat j + 3\hat k\right)\) ⇒ \(\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = \left(2\times(-7) + 3\times2 + 4\times3\right)\) ⇒ \(\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = \left(-14 +6 + 12\right)\) ⇒ \(\boldsymbol{\rm (\vec a + \vec b)\cdot(-7\hat i + 2\hat j + 3\hat k) = 4}\) |
|