| 1. |
If \(\vec{a}, \vec{b}\) and \(\vec{a}+\vec{b}\) are vectors of magnitude α then the magnitude of the vector \(\vec{a}-\vec{b}\) is1. \(\sqrt{2}\alpha\)2. \(\sqrt{3}\alpha\)3. 2α 4. 3α |
|
Answer» Correct Answer - Option 2 : \(\sqrt{3}\alpha\) Concept: Let two vectors are \(\rm \vec {a}\) and \(\rm \vec {b}\) Magnitude of sum of \(\rm \vec {a}\) and \(\rm \vec {b}\): \(\rm \left|\vec a+\vec b\right| = \sqrt{a^2+b^2+2ab\cosθ}\) Magnitude of difference of \(\rm \vec {a}\) and \(\rm \vec {b}\): \(\rm \left|\vec a-\vec b\right| = \sqrt{a^2+b^2-2ab\cosθ}\) where a, b are magnitude of vectors \(\rm \vec a \text{ and } \vec b\); and θ is angle between them.
Calculation: Given: \(\rm \left|\vec a\right|=\alpha\text{, }\left|\vec b\right|=\alpha\text{ and }\left|\vec a+\vec b\right|=\alpha\) As we know, \(\rm \left|\vec a+\vec b\right| = \sqrt{a^2+b^2+2ab\cosθ}\) ⇒ \(\rm \alpha = \sqrt{\alpha^2+\alpha^2+2(\alpha)(\alpha)\cosθ}\) ⇒ \(\rm \alpha^2 = 2\alpha^2+2\alpha^2\cosθ\) ⇒ \(\rm -1=2\cosθ\) ⇒ \(\boldsymbol{\rm \cosθ=-\frac{1}{2}}\) Now, \(\rm \left|\vec a-\vec b\right| = \sqrt{a^2+b^2-2ab\cosθ}\) ⇒ \(\rm \left|\vec a-\vec b\right| = \sqrt{\alpha^2+\alpha^2-2(\alpha)(\alpha)\cosθ}\) \(∵ \cos θ = -\frac{1}{2}\) ⇒ \(\rm \left|\vec a-\vec b\right| = \sqrt{2\alpha^2-2\alpha^2 (\frac{-1}{2})}\) ⇒ \(\rm \left|\vec a-\vec b\right| = \sqrt{2\alpha^2+\alpha^2}\) ⇒ \(\boldsymbol{\rm \left|\vec a-\vec b\right| = \sqrt{3}\alpha}\) |
|