1.

If `vec(a)` and `vec(b)` are unit vectors inclined at an angle `theta` then prove that(i)`sin(theta/2)=1/2|vec(a-vec(b)|` (ii) `tan(theta/2)=(|vec(a)-vec(b)|)/(|vec(a)-vec(b)|)`

Answer» Here, `veca` and `vecb` are unit vectors.
`:. |hata| = |hatb| = 1`
(i)`|hata-hatb|^2 = (hata)^2+(hatb)^2-2hata*hatb`
`=|hata|^2+|hatb|^2-2|hata||hatb|cos theta`
`=1^2+1^2-2(1)(1)costheta`
`=>|hata-hatb|^2=2(1-costheta)`
`=>|hata-hatb|^2/2 = 1-costheta`
`=>|hata-hatb|^2/2 = 2sin^2(theta/2)`
`=>|hata-hatb|^2/4 = sin^2(theta/2)`
`=>sin (theta/2) =1/2 |hata-hatb| ->(1)`
(ii)`|hata+hatb|^2 = (hata)^2+(hatb)^2+2hata*hatb`
`=|hata|^2+|hatb|^2+2|hata||hatb|cos theta`
`=1^2+1^2+2(1)(1)costheta`
`=>|hata+hatb|^2=2(1+costheta)`
`=>|hata+hatb|^2/2 = 1+costheta`
`=>|hata+hatb|^2/2 = 2cos^2(theta/2)`
`=>|hata+hatb|^2/4 = cos^2(theta/2)`
`=>cos (theta/2) =1/2 |hata+hatb| ->(2)`

Now, dividing (1) by (2),
`sin (theta/2)/cos (theta/2) = |hata-hatb|/|hata+hatb|`
`=> tan (theta/2) = |hata-hatb|/|hata+hatb|`


Discussion

No Comment Found