| 1. |
If \(\vec a\) and \(\vec b\) are two vectors such that |\(\vec a\)+ \(\vec b\)| = |\(\vec a\)|, then prove that vector (2\(\vec a\) + \(\vec b\)) is perpendicular to the vector \(\vec b\). |
|
Answer» Given that \(\vec a\)and \(\vec b\)are two vectors such that |\(\vec a\)+ \(\vec b\)| = |\(\vec a\)|. Now, |\(\vec a\) + \(\vec b\)|2 = (\(\vec a\) + \(\vec b\)) ∙ (\(\vec a\) + \(\vec b\)) = \(\vec a\) ∙ \(\vec a\) + \(\vec a\) ∙ \(\vec b\) + \(\vec b\) ∙ \(\vec a\) + \(\vec b\) ∙ \(\vec b\) = |\(\vec a\)|2 + 2\(\vec a\) ∙ \(\vec b\) + \(\vec b\) ∙ \(\vec b\). ( \(\because\) \(\vec a\)∙ \(\vec a\) = |\(\vec a\)|2 and \(\vec a\) ∙ \(\vec b\)= \(\vec b\)∙ \(\vec a\)) ⇒ |\(\vec a\) + \(\vec b\)|2 = |\(\vec a\) + \(\vec b\)|2 + 2\(\vec a\) ∙ \(\vec b\) + \(\vec b\) ∙ \(\vec b\)( \(\because\) |\(\vec a\) + \(\vec b\)| = |\(\vec a\)| (Given)) ⇒ 2\(\vec a\) ∙ \(\vec b\)+ \(\vec b\) ∙ \(\vec b\) = 0. ... (1) Now, (2\(\vec a\)+ \(\vec b\)) ∙ \(\vec b\) = 2\(\vec a\) ∙ \(\vec b\)+ \(\vec b\)∙ \(\vec b\)= 0 (By equation (1) ) We know that two vectors \(\vec a\) and \(\vec b\) are perpendicular only if \(\vec a\) ∙ \(\vec b\) = 0. Hence, that vector (2\(\vec a\) + \(\vec b\)) is perpendicular to the vector \(\vec b\). |
|