1.

If \(\vec a\) and \(\vec b\) are two vectors such that |\(\vec a\)+ \(\vec b\)| = |\(\vec a\)|, then prove that vector (2\(\vec a\) + \(\vec b\)) is perpendicular to the vector \(\vec b\).

Answer»

Given that \(\vec a\)and \(\vec b\)are two vectors such that |\(\vec a\)+ \(\vec b\)| = |\(\vec a\)|.

Now, |\(\vec a\) + \(\vec b\)|2 = (\(\vec a\) + \(\vec b\)) ∙ (\(\vec a\) + \(\vec b\)) = \(\vec a\)\(\vec a\) + \(\vec a\)\(\vec b\) + \(\vec b\)\(\vec a\) + \(\vec b\)\(\vec b\) 

= |\(\vec a\)|2 + 2\(\vec a\)\(\vec b\) + \(\vec b\)\(\vec b\)

( \(\because\) \(\vec a\)\(\vec a\) = |\(\vec a\)|2 and \(\vec a\)\(\vec b\)= \(\vec b\)\(\vec a\)

⇒ |\(\vec a\) + \(\vec b\)|2 = |\(\vec a\) + \(\vec b\)|2 + 2\(\vec a\)\(\vec b\) + \(\vec b\)\(\vec b\)( \(\because\) |\(\vec a\) + \(\vec b\)| = |\(\vec a\)| (Given)) 

⇒ 2\(\vec a\)\(\vec b\)+ \(\vec b\)\(\vec b\) = 0. ... (1)

Now, (2\(\vec a\)+ \(\vec b\)) ∙ \(\vec b\) = 2\(\vec a\)\(\vec b\)+ \(\vec b\)\(\vec b\)= 0 (By equation (1) ) 

We know that two vectors \(\vec a\) and \(\vec b\) are perpendicular only if  \(\vec a\)\(\vec b\) = 0. 

Hence, that vector (2\(\vec a\) + \(\vec b\)) is perpendicular to the vector \(\vec b\).



Discussion

No Comment Found

Related InterviewSolutions