1.

if u, v,w are the roots of the equation (x-a)3+(x-b)3+(x-c)3=0 then find ∂(u,v,w)/∂(a,b,c)

Answer»

Given that u, v, w are roots of the equation (x-a)3 + (x-b)3 + (x-c)3 = 0

⇒ 3x3 - 3(a+b+c)x2 + 3(a2+b2+c2)x - (a3+b3+c3) = 0

∵ u, v and w are roots of given equation.

∴ Sum of roots = u+v+w = -b/a \(=\frac{-(-3(a+b+c))}{3}\) = a+b+c

⇒ u + v + w - a - b - c = 0

⇒ f(u, v, w) = u+v+w - (a+b+c) = 0

Now, \(\frac{\partial u}{\partial a}=1,\frac{\partial u}{\partial b}=1,\frac{\partial u}{\partial c}=1,\)

\(\frac{\partial v}{\partial a}=1,\frac{\partial v}{\partial b}=1,\frac{\partial v}{\partial c}=1,\)

\(\frac{\partial w}{\partial a}=1,\frac{\partial w}{\partial b}=1,\frac{\partial w}{\partial c}=1\)

Now, \(\frac{\partial(u,v,w)}{\partial(a,b,c)}=\begin{bmatrix}​​\frac{\partial u}{\partial a}&​​\frac{\partial u}{\partial b}&​​\frac{\partial u}{\partial c}\\​​\frac{\partial v}{\partial a}&​​\frac{\partial v}{\partial b}&​​\frac{\partial v}{\partial c}\\​​\frac{\partial w}{\partial a}&​​\frac{\partial w}{\partial b}&​​\frac{\partial w}{\partial c}\end{bmatrix}\)

\(=\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}=0\)

Hence, \(\frac{\partial(u,v,w)}{\partial(a,b,c)}=0\)



Discussion

No Comment Found

Related InterviewSolutions