1.

If two normals to a parabola `y^2 = 4ax` intersect at right angles then the chord joining their feet pass through a fixed point whose co-ordinates are:

Answer» equation of parabola
`y^2=4ax`
co-ordinates of P`(at_1^2,2at_1)`
co-ordinates of q`(at_2^2,2at_2)`
slope of normal=-t
slope at `M_(N1)=-t_1`
slope at `M_(N2)=-t_2`
we know N1 and N2 are perpendicular
product of there slope will be
`(-t_1)(-t_2)=-1`
`t_1*t_2=-1`
from diagram we can see that
P=`(at_1,2at_2)`
Q=`(a/t_1^2,(2a)/t_1)`
`m_(pr)=m_(pq)`
`(2at_1-0)/(at_1^2-alpha)=(2at_1-2at_2)/(at_1^2-at_2^2)`
`2at_1t_2+2at_12=2at_1^2-2alpha`
`-alpha=at_1t_2-2alpha`
`alpha=a`
poiunts of R(a,o)


Discussion

No Comment Found

Related InterviewSolutions