1.

If the roots of the equation \( A x^{2}+B x+C=0 \) are \( \alpha \) and \( \beta \), Show that the equiation whose roots are \( \frac{\alpha}{\beta} \) and \( \frac{\beta}{\alpha} \) is given by\[A C x^{2}-\left(B^{2}-2 A C\right) x+A C=0\]

Answer»

Roots of the equation Ax2 + Bx + C = 0 are α and β.

∴ Sum of roots = α + β = \(\frac{-B}{A}\)

And product of roots = αβ = \(\frac{C}{A}\)

Now,

(α + β)2 = α2 + β2 + 2αβ

∴ α2 + β2 = (α + β)2 - 2αβ

\((\frac{-B}{A})^2\)\(\frac{2C}{A}\)

\(\frac{B^2}{A^2}\) - \(\frac{2C}{A}\)

\(\frac{B^2-2AC}{A^2}\)

Sum of required roots \(\frac{\alpha}{\beta}\) and \(\frac{\beta}{\alpha}\),

\(\frac{\alpha}{\beta}\) + \(\frac{\beta}{\alpha}\)

\(\frac{\alpha^2+\beta^2}{\alpha\beta}\) 

\(\frac{\frac{B^2-2AC}{A^2}}{\frac{C}{A}}\)

\(\frac{B^2-2AC}{AC}\)

And products of roots = \(\frac{\alpha}{\beta}\) x \(\frac{\beta}{\alpha}\) = 1.

∴ Equation whose roots we are \(\frac{\alpha}{\beta}\) and \(\frac{\beta}{\alpha}\) is :

x2 - (sum of roots)x + Product of roots = 0

⇒ x2\(\frac{(B^2-2AC)}{AC}x\) + 1 = 0

⇒ ACx2 - (B2-2AC)x + AC = 0

Hence proved.



Discussion

No Comment Found

Related InterviewSolutions