Saved Bookmarks
| 1. |
If the line `y=3x+c`touches the parabola `y^2=12 x`at point `P`, then find the equation of the tangent at point `Q`where `P Q`is a focal chord. |
|
Answer» Correct Answer - `x+3y+27=0` Line `(1)/(3)y=x+(c)/(3)` touches the parabola `y^(2)=12x`. Let us compare this line `ty=x+at^(2)orty=x+3t^(2)`. So, we have `t=(1)/(3)` which is parameter of point P. Since PQ is focal chord, parameter of point Q is -3. Therefore, equation of tangent at Q is `(-3)y=x+3(-3)^(2)` `or" "x+3y+27=0` |
|