Saved Bookmarks
| 1. |
If the chord of contact of the tangents drawn from a point on thecircle `x^2+y^2+y^2=a^2`to the circle `x^2+y^2=b^2`touches the circle `x^2+y^2=c^2`, then prove that `a ,b`and `c`are in GP. |
|
Answer» Let (h,k) be the point `x^(2)+y^(2)=a^(2)`. Then, `h^(2)k^(2)=a^(2)` (1) The equation of the chord of contact of tangents drawn from (h,k) to `x^(2)+y^(2)=b^(2)` is `hx+ky=b^(2)` (2) This touches the circle `x^(2)+y^(2)=c^(2)`. Therefore, `|(-b^(2))/(sqrt(h^(2)+k^(2)))|` or `|(-b^(2))/(sqrt(a^(2)))|` [Using (1)] or `b^(2)=ac` Therefore, a,b, and c are in GP. |
|