1.

If the chord of contact of the tangents drawn from a point on thecircle `x^2+y^2+y^2=a^2`to the circle `x^2+y^2=b^2`touches the circle `x^2+y^2=c^2`, then prove that `a ,b`and `c`are in GP.

Answer» Let (h,k) be the point `x^(2)+y^(2)=a^(2)`. Then,
`h^(2)k^(2)=a^(2)` (1)
The equation of the chord of contact of tangents drawn from (h,k) to `x^(2)+y^(2)=b^(2)` is
`hx+ky=b^(2)` (2)
This touches the circle `x^(2)+y^(2)=c^(2)`. Therefore,
`|(-b^(2))/(sqrt(h^(2)+k^(2)))|`
or `|(-b^(2))/(sqrt(a^(2)))|` [Using (1)]
or `b^(2)=ac`
Therefore, a,b, and c are in GP.


Discussion

No Comment Found

Related InterviewSolutions