1.

If `tan^(-1)(1/(1+1. 2))+tan^(-1)(1/1+2. 3)++tan^(-1)(1/(1+ndot(n+1)))=tan^(-1)theta,`then findthe value of `thetadot`

Answer» General term in the left side of the given equation can be given as,
`T_n = tan^-1(1/(1+n(n+1))) = tan^-1((n+1-n)/(1+n(n+1)))`
We know, `tan^-1((x-y)/(1+xy)) = tan^-1x - tan^-1y`
`:. T_n = tan^-1(n+1)-tan^-1n`
So, left side of our given equation becomes,
`(tan^-1 2-tan^-1 1)+(tan^-1 3-tan^-1 2)+...(tan^-1 (n+1)-tan^-1 n)`
`=(tan^-1 (n+1) -tan^-1 1)`
`=tan^-1((n+1-1)/(1+1(n+1)))`
`=tan^-1(n/(n+2))`
We are given, `tan^-1(n/(n+2)) = tan^-1(theta)`
`:. theta = (n/(n+2))`


Discussion

No Comment Found

Related InterviewSolutions