1.

If `siny=xsin(a+y),`prove that `(dy)/(dx)=(sin^2(a+y))/(sina)`

Answer» `sin y = xsin(a+y)`
`=>x = siny/(sin(a+y))`
Differentiating both sides w.r.t.`x`,
`=>1 = (sin(a+y)cosy-cos(a+y)siny)/(sin^2(a+y))dy/dx`
As `sin(m-n) = sinmcosn-sinncosm`
`=>dy/dx = sin^2(a+y)/(sin(a+y-y))`
`=>dy/dx = sin^2(a+y)/(sina)`


Discussion

No Comment Found

Related InterviewSolutions