Saved Bookmarks
| 1. |
If `siny=xsin(a+y),`prove that `(dy)/(dx)=(sin^2(a+y))/(sina)` |
|
Answer» `sin y = xsin(a+y)` `=>x = siny/(sin(a+y))` Differentiating both sides w.r.t.`x`, `=>1 = (sin(a+y)cosy-cos(a+y)siny)/(sin^2(a+y))dy/dx` As `sin(m-n) = sinmcosn-sinncosm` `=>dy/dx = sin^2(a+y)/(sin(a+y-y))` `=>dy/dx = sin^2(a+y)/(sina)` |
|