1.

If \( \sin (A+B)=\frac{1}{2} \) and \( \cos (A+B)=\frac{1}{2}, 0^{\circ}B \) then values of \( A \) and \( B \) are

Answer»

\(sin(A - B) = \frac 12 = sin 30°\)

⇒ A - B = 30°    ....(i)

\(cos(A + B) = \frac 12 = 60°\)

⇒ \(A + B = 60° \)  .....(ii)

On adding equations (i) & (ii), we get

\((A - B) + (A + B) = 30° + 60° = 90°\)

⇒ \(2A = 90°\)

⇒ \(A = \frac{90°}2 = 45° \)

\(\therefore A + B = 60°\)

⇒ \(B = 60° - A = 60° - 45° = 15°\)



Discussion

No Comment Found

Related InterviewSolutions