1.

If sin A = 12 / 13 , so find cos A and tan A ??

Answer» Thanks to all of you for answering my question ........
CosA=5/13TanA=12/5
Sin A= 12/13 Therefore p=12 and h=13 b2 = h2-p2b2= (13)2 -(12)2b2=169-144b2=25b= root25 b=5 Hence cos A= b/h=5/13 tan A=p/b=12/5
Given sin A=12/13 ie. Opposite/HypotenuseThen By Pythagoras theoremAC^2=AB^2+BC^213^2=12^2+BC^2169=144+BC^2169-144=BC^2√25=BC5=BCcos A = Adjacent side/Hypotenusecos A=5/13tan A= 12/5


Discussion

No Comment Found