1.

If sec x = \(\sqrt{2}\) and \(\frac{3\pi}{2}\) < x <\(2\pi\) , find the values of \(\frac{1+tanx +cosec x}{1+cotx-cosecx}\)

Answer»

Given, secx = \(\sqrt{2}\),    \(\frac{3\pi}{2}<x<2\pi\) 

∴ cos x = \(\frac{1}{\sqrt{2}}\)\(\frac{3\pi}{2}\) < x <\(2\pi\) 

and sinx = \(-\sqrt{1-cos^2x} \) as  \(\frac{3\pi}{2}\) < x <\(2\pi\)  

= \(-\sqrt{1-(\frac{1}{\sqrt{2}})^2}\)

= \(-\sqrt{\frac{1}{2}}\) =\(-\frac{1}{\sqrt{2}}\)

∴ cosecx = \(-\sqrt{2}\) 

Now, \(tanx=\frac{sinx}{cosx}=\frac{\frac{-1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=-1\)

\(cotx=\frac{1}{tanx}=-1\) 

Now, 

\(\frac{1+tanx+cosecx}{1+cotx-cosecx}=\frac{1+(-1)+(-\sqrt{2})}{1+(-1)-(-\sqrt{2})}=\frac{-\sqrt{2}}{2}=-1\)

Which class you are from..?Is it 10 th level...

Secx= root 2

So cox x = 1/ root2

So x= pi/4 or 45 degree

Substitute the value of tan45 cot45 and cosec45

You will get   root 2+1/root 2-1

Futher you msy simplfy by taking conjugate....


Discussion

No Comment Found

Related InterviewSolutions