1.

If \(\rm \vec a\) is a unit vector and \(\rm \left(\vec x + 2\vec a\right) \cdot \left(\vec x - 2\vec a\right) = 12\), then find \(|\rm \vec x |\).1. 42. 73. 84. 2

Answer» Correct Answer - Option 1 : 4

Concept:

\(\rm \left(\vec a + \vec b\right) \cdot \left(\vec a - \vec b\right) = \left|\vec a\right|^2-\left|\vec b\right|^2\)

If \(\rm \vec u\) is a unit vector, then \(\rm \left|\vec u\right|=1\).

 

Calculation:

It is given that \((\rm \vec x + \rm 2\vec a) \cdot (\rm \vec x - \rm 2\vec a) = 12\).

⇒ \(\rm \left|\vec x\right|^2 - 4\left|\vec a\right|^2 = 12\)

Since \(\rm \vec a\) is a unit vector, we get:

⇒ \(\rm \left|\vec x\right|^2 - 4= 12\)

⇒ \(\rm \left|\vec x\right|^2 =16\)

⇒ \(|\rm \vec x |\) = 4



Discussion

No Comment Found

Related InterviewSolutions