Saved Bookmarks
| 1. |
If \(\rm (2^x-1)^2=4(2^x-2)\) , then the value of x is 1. \(\rm log_23\)2. \(\rm log_32\)3. \(\rm log_25\)4. \(\rm log_53\) |
|
Answer» Correct Answer - Option 1 : \(\rm log_23\) Concept: \(\rm \frac{log a}{log b}=log_ba\)
Calculation: Here, \(\rm (2^x-1)^2=4(2^x-2)\) \(⇒ \rm 2^{2x}-(2)2^x+1=(4)2^x-8\) \(⇒ \rm 2^{2x}-(6)2^x+9=0\) Now, let 2x = y ∴\(\rm y^2-6y+9=0\) \(⇒ \rm y^2-3y-3y+9=0\) \(⇒ \rm y(y-3)-3(y-3)=0\) (y - 3) (y - 3) = 0 ⇒ y = 3 ⇒ 2x = 3 x log 2 = log(3) ⇒ x = \(\rm \frac{log 3}{log2}\) = \(\rm log_23\) Hence, option (1) is correct. |
|