Saved Bookmarks
| 1. |
If `P` represents radiation pressure , `C` represents the speed of light , and `Q` represents radiation energy striking a unit area per second , then non - zero integers `x, y, z` such that `P^(x) Q^(y) C^(z)` is dimensionless , find the values of `x, y , and z`.A. x =1 , y =1 , z = -1B. x = 1 , y = -1 , z = 1C. x = -1 , y = 1 , z=1D. x = 1 , y = 1 , z =1 |
|
Answer» Correct Answer - B `P = (F)/(A) = (M^(1)L^(1)T^(-2))/(L^(2)) M^(1)L^(-1)T^(2)` `C = L^(1) T^(-1)` `Q = (E)/(At) = (ML^(2)T^(-2))/(L^(2)T) = MT^(3)` `P^(x)Q^(y)C^(z) = (M^(1) L^(-1)T^(-2))^(x) (MT^(-3))^(y) (L^(1)T^(-1))^(x) = M^(0)L^(0)T^(0)` `M^(x + y) L^(-x + z) T^(-2x - 3y -z) = M^(0)L^(0)T^(0)` x + y = 0 `-x + 2 = 0 ` `-2x - 3y - z = 0` All these conditions are statisfied by option (2) |
|