1.

If one zero of the polynomial (a2 + 9)x2 + 13x + 6a is reciprocal of the other, find the value of ‘a’.

Answer»

Let one zero of the given polynomial is α.

Given that one zero of given polynomial is reciprocal of the other.

∴ The other zero of given polynomial is \(\frac{1}{a}.\)

Hence, the zeros of the given polynomial (α2 + 9)x2 + 13x + 6 are and \(\frac{1}{a}.\)

Now, the product of the zeros is α. \(\frac{1}{a}\) = \(\frac{6a}{a^2+9}\)

⇒ \(\frac{6a}{a^2+9}=1\)

⇒ α2 + 9 = 6a

⇒ α2 − 6 + 9 = 0

⇒ (α − 3)2 = 0 (∵ (α − b)2 = α2 − 2ab + b2)

⇒ α = 3.

Hence, the value of is 3.



Discussion

No Comment Found

Related InterviewSolutions