Saved Bookmarks
| 1. |
If `m` and `x` are real numbers where `m in I` `e^(2micot^(-1)x)((x.i+1)^m)/((x.i-1)^m)` |
|
Answer» `Cot^(-1)x=theta` `x=cottheta` `((x i+1)/(x i-1))^m=(i^n(x+1/i)^m)/(i^m(x-1/i)^m)` `=(x-1)^m/(x+i)^n` `=(cottheta-1)^m/(cottheta+1)^m` `=(costheta-sintheta)^m/(costheta+sintheta)^m` `=(e^(-itheta)/e^(1theta))=(e^(-i2theta))^m` `=e^(i2mtheta)` `=e^(i2mtheta-i2mtheta)=e^0=1` option c is correct. |
|