Saved Bookmarks
| 1. |
If integrating factor of `x(1-x^2)dy+(2x^2y-y-a x^3)dx=0`is`e^(intp dx ,)`then `P`is equal to(a)`( b ) (c) (d)(( e )2( f ) x^(( g )2( h ))( i )-a (j) x^(( k )3( l ))( m ))/( n )(( o ) x(( p ) (q)1-( r ) x^(( s )2( t ))( u ) (v)))( w ) (x) (y)`(z)(b) `( a a ) (bb)2( c c ) x^(( d d )3( e e ))( f f )-1( g g )`(hh)(c)`( d ) (e) (f)(( g )2( h ) x^(( i )2( j ))( k )-a)/( l )(( m ) a (n) x^(( o )3( p ))( q ))( r ) (s) (t)`(u)(d) `( v ) (w) (x)(( y )2( z ) x^(( a a )2( b b ))( c c )-1)/( d d )(( e e ) x(( f f ) (gg)1-( h h ) x^(( i i )2( j j ))( k k ) (ll)))( m m ) (nn) (oo)`(pp)A. `(2x^(2)-ax^(3))/(x(1-x^(2))`B. `2x^(3)-1)`C. `(2x^(2)-1)/(ax^(3))`D. `(2x^(2)-1)/(x(1-x^(2))` |
|
Answer» Correct Answer - D We have, `(dy)/(dx)+((2x^(2)-1))/(x(1-x^(2)))y=(ax^(2))/(1-x^(2))` This is a linear differential equation of the form `(dy)/(dx)+Py=Q`, where `P=(2x^(2)-1)/(x(1-x^(2))` |
|