| 1. |
If \(\int^x_{\log 2} \frac 1 {\sqrt {e^x - 1}} dx = \frac \pi 6,\) then x =1. log 22. 2 log 23. 3 log 24. 4 log 2 |
|
Answer» Correct Answer - Option 2 : 2 log 2 Concept: Integration formulas:
Calculation: Let us suppose, ex - 1 = t2 Now by differentiating the above equation w.r.t x we get ⇒ ex dx = 2t dt \(\Rightarrow dx = \frac{{2t\ dt}}{{{t^2} + 1}}\) Put the value of ex-1 and dx in given integration \(\int {\frac{1}{{\sqrt {{t^2}} }}} \times \frac{{2tdt}}{{{t^2} + 1}}\) \(\int 2 \frac{{dt}}{{{t^2} + 1}} ⇒ 2{\tan ^{ - 1}}t\) Now put the value of t and limit in the above integrand \([2{\tan ^{ - 1}}\sqrt {{e^x} - 1} ]_{\log 2}^x = \frac{\pi }{6}\) \(2{\tan ^{ - 1}}\sqrt {{e^x} - 1} - 2{\tan ^{ - 1}}\sqrt {{e^{\log 2}} - 1} = \frac{\pi }{6}\) \(2{\tan ^{ - 1}}\sqrt {{e^x} - 1} - 2{\tan ^{ - 1}}1 = \frac{\pi }{6}\) \(2{\tan ^{ - 1}}\sqrt {{e^x} - 1} - \frac{\pi }{2} = \frac{\pi }{6}\) \(2{\tan ^{ - 1}}\sqrt {{e^x} - 1} = \frac{{2\pi }}{3}\) \(\sqrt {{e^x} - 1} = \tan \frac{\pi }{3} = \sqrt 3 \) \({e^x} - 1 = 3 ⇒ {e^x} = 4 ⇒ x = 2\log 2\) Hence, option B is the correct answer. |
|