1.

If \(\frac{x}4+\frac{y}3= -\frac{15}{12}\) and \(\frac{x}2+y = 1\), y then find the value of (x + y).

Answer»

The given pair of equations is

\(\frac{x}4+\frac{y}3= -\frac{15}{12}\)........(i) 

\(\frac{x}2+y = 1\)......(ii)

 Multiplying (i) by 12 and (ii) by 4, we have 

3x + 4y = 5 ……….(iii) 

2x + 4y = 4 ………(iv) 

Now, subtracting (iv) from (iii), we get 

x = 1 

Putting x = 1 in (iv), we have 

2 + 4y =4 

⇒ 4y = 2 

⇒ y = 1/2 

∴ x + y = 1 + 1/2 = 3/2 

Hence, the value of x + y is 3/2 .



Discussion

No Comment Found